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ABSTRACT

Small-angle neutron scattering data, taken as a function of time from initiation of

gelation in colloidal silica suspensions with silica mass fractions ranging from 15% to 30%,

are presented.  Over a wide range of initial pH, the measured structure factor S q( ) contains a

low angle peak that, as time progresses, grows in height and moves to lower wavevectors q .

Sometime after the gels have set, this peak stops growing, marking the end of the reaction.

The data scale according to the relation S q t q t S q q tm

d

m
f, ~ ˜( ) ( ) ( )( )− , where q tm( ) is the

wavevector location of the low angle peak as a function of time t from initiation, d f is a

fractal dimension, and S̃ is a characteristic structure function.  The exponent d f is

insensitive to the silica mass fraction but that the form of S̃ is mass fraction dependent.
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1. INTRODUCTION

Scattering experiments using light, x-rays, and neutrons, have shown that many silica

(and other) gels obey the relation S q q
d f( ) −~ where S q( ) is the measured structure factor

and q is the wavevector of the scattered radiation [1-3].  Because this power-law behavior is

consistent with the scattering predicted from a fractal object, the exponent d f is normally

referred to as the gel’s fractal dimension.  According to the fractal model, the power law will

be observed only over a range of wavevectors which probe length scales larger than the

fundamental unit of the gel (a particle of size 7–24 nm for gels made from colloidal silica, for

example) but smaller than the average size of the fractal aggregates produced during gelation

[4] which ultimately coalesce to form the gel.  Strictly, the power-law is also correct only

when correlations between aggregates are absent, as in a dilute noninteracting solution.  In

the presence of interactions the structure factor will deviate from the power-law, perhaps

giving rise to a peak in the structure factor at a wavevector related to the dominant correlation

length in the system.

In a relatively dilute solution ( ~ . %0 03 by volume) of aggregating polystyrene

spheres, Carpineti and Giglio [5] found such a correlation peak at small wavevectors and

discovered that the structure factor at various times during the aggregation process followed

the relation S q t q t S q q tm

d

m
f, ~ ˜( ) ( ) ( )( )− .  Here, q tm( ) is the wavevector location of the low

angle peak as a function of time, and S̃ is a characteristic structure function.  At larger

wavevectors (far from the peak location), the power-law relation also held, and the value of

d f derived from the power-law and scaling analyses were the same.  Computer simulation of

the decomposition of a Lennard-Jones system at reduced density near 30% [6,7] and

measurements of the structure factor in a gel made of colloidal silica with a mass fraction of

30% [8] have also recently been shown to scale by the above relation.   In these later two

examples, however, the density was high and correlations were strong, so there was no

regime in which the power-law relation could be trusted to yield a meaningful exponent.

Scaling of the structure factor with time during aggregation is thus a powerful - perhaps

indispensable - tool for obtaining exponents for dense aggregating systems.



In this paper we report on measurements of the small angle neutron scattering from

gels made of 7 nm diameter colloidal silica particles.  Mass fractions ranging from 15% to

30% were investigated and a range of initial pH changes – used to initiate the gelation

reaction – were also studied.  Scaling of the data was attempted as both a function of time

since initiation and as a function of pH.

2. EXPERIMENTAL

Small-angle neutron scattering intensities from the gels were measured on the NG3

spectrometer at the NIST Cold Neutron Research Facility (CNRF).  The neutron wavelength

was set at λ = 0 5.  nm , and the sample-to-detector distance was 13.15 m.  In this

configuration, the measurable wavevector range is 0.03 nm–1 < q < 0.42 nm–1, where

q = 4 2π θ λsin( / ) and θ is the scattering angle.  Intensities were collected by an area

detector and corrected for sample cell and background contributions and variations in detector

efficiency.  The corrected data were circularly averaged and then normalized to absolute units

by comparing the measured count rate to that from a (flat) H2O standard.

Gels with mass fractions of 30%, 25%, 20%, and 15% were studied.  The samples

were prepared by adding the appropriate amount of deionized H2O to stock Ludox

SM–30 [9], which is a 30% by mass suspension of 7 nm diameter colloidal silica particles

stabilized in an aqueous medium of pH = 10.  Gelation of a given sample was initiated by

adding concentrated HCl to the suspension thus lowering its pH.  Samples with a range of

pH from about 4 to 8 were created for each of the four sample densities.  Immediately

following gel initiation, the solutions were transferred to 1 mm gap-width quartz cells for

measurement in the neutron spectrometer.  The 30% and 15% by mass samples were studied

as a function of time from gel initiation by measuring the structure factor approximately 5

min after addition of the HCl and then every half hour until the gelation reaction was

complete.  The duration of each of these measurements was 5 min.  Measurements of the

structure factor from the 25% and 20% by mass samples were made as a function of pH on

samples long after (~2 days) the gels had been created and were not followed as a function of



time.

3.  RESULTS

Figure 1 shows the diffraction data normalized to absolute scattering units as a

function of time from gel initiation for 30% (Fig. 1a) and 15% (Fig. 1b) by mass samples

prepared with a pH near the middle of the range studied.  A peak in the structure factor at low

angles is clearly present in the 30% sample.  This peak is observed to grow in height with

time while shifting to slightly smaller angles.  The growth of this peak is relatively rapid

during the first 3 h and then slows down markedly as the gel sets.  Only minor changes in

the measured scattering occur after about 10 h indicating that at this time the gelation reaction

is essentially complete.  By contrast, a peak is not observed in the 15% data.  A rise in

scattering with decreasing angle is observed, however, and like the 30% by mass sample the

magnitude of this small-angle scattering increases with time.  The evolution of this sample

was followed for 8.5 h — enough time to observe significant slowing of the rate of change

of the small angle scattering, but not enough time to follow gelation reaction to completion

[10].

The fact that no peak was observed in the 15% sample does not necessarily mean that

the origins of the rise in scattering are different between the data displayed in Figs. 1a and

1b.  More likely, there is a peak, but the low-q limits of the neutron spectrometer prevent us

from observing it.  This possibility is supported when the data from the 25% and 20%

samples are compared to those from the 30% and 15% samples.  Figure 2 shows measured

structure factors, as a function of pH, for each of these four densities.  The data in these

plots are from gels prepared approximately 48 h before measurement.  As in Fig. 1a there is

a clear peak in the 30% samples (Fig. 2a).  A peak is also observed in the 25% samples (Fig.

2b) but is obviously closer to the limits of the spectrometer.  The data from the 20% samples

(Fig. 2c) at a pH of 7.20 and 6.04 also indicate a peak but it appears that any such peak in

the sample with a pH of 4.63 is beyond the limits of the spectrometer.  Finally, for the 15%

samples (Fig. 2d), as in Fig.1a, peaks at lower angles are not apparent.  We thus conclude



that in all of the samples measured that there is a peak in the structure factor at small angles –

whether observable on this instrument or not – and that its height increases and moves

towards lower wavevectors as a function of time after initiation, or as a function of

decreasing pH.

4. DISCUSSION

Peaks in the structure functions indicate that there are correlations in these systems.

Since there is no simple way to determine the degree of correlation between the aggregates

(because the small-angle scattering could be dominated by the internal structure of the

aggregates, correlations between the aggregates, or more likely, a combination of both [11]),

it is not appropriate to use a power-law slope from the measured scattering to characterize

these gels.  The scaling relation S q t q t S q q tm

d

m
f, ~ ˜( ) ( ) ( )( )− discussed in the introduction,

however, does not demand that correlations be absent in the system – in fact, correlations

may make it easier to scale the data.  All that the scaling relation requires is that the structure

factor at various times have the same form S̃ X( ) and that the scattering density increases with

some characteristic length scale of the system ( qm
−1 , for example) raised to the power d f .

Depending on the material, d f can be either the Euclidean dimension [12] or a mass fractal

dimension [5].

For the 30% by mass data of Fig. 1a, it is simple to see how the scaling relation is

used.  First, the location of the correlation peak qm is determined for each of the curves, the

wavevector is scaled by qm , the structure factor magnitude is modified by qm

d f− , and then the

scaled data sets are plotted together.  The exponent d f , however, needs to be determined.

Here, we constructed scaling plots for a range of exponents and found that exponent which

provided the best fit.  For the 30% sample of Fig. 1a the data fall on a single curve for only a

relatively narrow range of values centered around d f = ±1 44 0 1. . – an outcome consistent

with analysis of similar data reported recently [8].  The result is presented in Fig. 3a.

It is not at first clear how such an analysis could be performed for the 15% data since

the correlation peaks are beyond the limits of measurement and thus cannot be used to define



the set of qm .  The values of qm , however, do not need to come from the correlation peak

position.  For the scaling relation to hold any consistent measure of a characteristic scale can

be used – the location of an inflection point in the measured structure factor for instance [13].

Unfortunately, we were unable to define such a consistent measure for these data.  Instead

we solved not only for the best value of the exponent d f but also for the best values to assign

to the set of qm (but keeping one of the qmfixed).  It may seem by allowing the qm to vary

this way, that scaling could be achieved for nearly any choice of d f , or worse, any choice of

data sets.  Luckily, the solutions to this scaling problem are not that flexible, because the

choice of qm fixes the scale of both the horizontal and vertical axes since d f is kept constant

over all data sets.  The data could not be scaled to fit on a universal curve unless the exponent

was chosen in the range d f = ±1 41 0 1. . .  Other choices for d f , regardless of the set of qm

tried, failed to place the measurements on a single curve.  The result of this analysis is shown

in Fig. 3b.

Interestingly, the exponent for both the 30% and 15% samples are within

experimental uncertainty of each other.  This may lead one to speculate that the structure of

the 30% and the 15% samples are the same except for a simple change in scale, much as the

early time data are similar to the later time data.  If this were true, it would be possible to

construct a scaling plot from both data sets such that all of the measurements fall on a single

curve.  This cannot be done with these two data sets because, while both have the same

fractal exponent, they have different characteristic structure functions.  The differing

structure functions could be the result of qualitative differences in the behavior of the longer-

range correlations in the two samples or, less likely, that the internal structure of the fractal

aggregates comprising the gel differ in some way even though they have the same exponent.

Having measured the exponents in these gels from a scaling analysis, it is interesting

to compare this to the result one would have obtained if a simple power-law analysis was

performed on the same data.  In Figs. 4a and 4b are plotted the same scaled data shown in

Figs. 3a and 3b but this time with logarithmic axes.  At higher wavevectors these plots show

an approximately linear region from which a power-law exponent can be obtained.  Instead



of reporting these slopes here, we have placed a triangle on each plot with a slope equal to

that obtained by the scaling analysis.  While the fit to the 30% sample is not as good as that

to the 15% sample, it is clear that both methods give essentially the same value for the

exponent.

This result, however, will in general not be true for all systems. There are two

reasons for this:  The first has been discussed above – both the correlations between the

aggregates and the internal structure of the aggregates contribute to the diffraction effects and

it is difficult to know their relative contributions.  Apparently, in the two systems presented

here the internal structure contribution dominates the scattering such that there is a region in

which a power-law analysis is relatively weakly affected by correlations and thus yields a

correct result.  But this could not be assumed at the outset because there was no way of

knowing to what extent the correlations contributed.  The second reason is that the two

methods actually measure two different properties of the system.  That is, the scaling

analysis provides a parameter defining how the system coarsens with time, whereas the

power-law analysis measures a static structural property of the system.  Fractal aggregation

models predict that these two exponents will be the same but again this is not true in all

models.  For an example of an instance where the two methods yield completely different

results see Ref. [7].
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Figure Captions:

Figure 1: Measured neutron scattering cross sections as a function of time since gelation

initiation for (a) 30% by mass and (b) 15% by mass colloidal silica samples.

Figure 2: Measured neutron scattering cross sections as a function of initial solution pH

for gels made from (a) 30%, (b) 25%, (c) 20% , and (d) 15% by mass colloidal

silica solutions.  Measurements were made after the gelation reaction had

completed.

Figure 3: The measured neutron scattering cross sections presented in Fig. 1 but scaled

according to the relation give in the text.

Figure 4: Same scaled data as in Fig. 3 but plotted on logarithmic axes so that a power law

slope might be extracted.
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